CLS Token in Vision Transformers
Learn how the CLS token acts as a global information aggregator in Vision Transformers, enabling whole-image classification through attention mechanisms.
Understanding attention mechanisms in neural networks, from basic concepts to advanced implementations.
Learn how the CLS token acts as a global information aggregator in Vision Transformers, enabling whole-image classification through attention mechanisms.
Explore how hierarchical attention enables Vision Transformers (ViT) to process sequential data by encoding relative positions.
Explore how multi-head attention enables Vision Transformers (ViT) to process sequential data by encoding relative positions.
Explore how positional embeddings enable Vision Transformers (ViT) to process sequential data by encoding relative positions.
Explore how self-attention enables Vision Transformers (ViT) to understand images by capturing global context, with CNN comparison.
Learn ALiBi, the position encoding method that adds linear biases to attention scores for exceptional length extrapolation in transformers.
Compare Multi-Head, Grouped-Query, and Multi-Query Attention mechanisms to understand their trade-offs and choose the optimal approach for your use case.
Learn about attention sinks, where LLMs concentrate attention on initial tokens, and how preserving them enables streaming inference.
Understand cross-attention, the mechanism that enables transformers to align and fuse information from different sources, sequences, or modalities.
Learn how Grouped-Query Attention (GQA) balances Multi-Head quality with Multi-Query efficiency for faster LLM inference.
Explore linear complexity attention mechanisms including Performer, Linformer, and other efficient transformers that scale to very long sequences.
Learn how masked attention enables autoregressive generation and prevents information leakage in transformers and language models.
Learn Multi-Query Attention (MQA), the optimization that shares keys and values across attention heads for massive memory savings.
Learn Rotary Position Embeddings (RoPE), the elegant position encoding using rotation matrices, powering LLaMA, Mistral, and modern LLMs.
Master scaled dot-product attention, the fundamental transformer building block. Learn why scaling is crucial for stable training.
Sliding Window Attention for long sequences: local context windows enable O(n) complexity, used in Mistral and Longformer models.
Explore sparse attention mechanisms that reduce quadratic complexity to linear or sub-quadratic, enabling efficient processing of long sequences.